Penerapan Metode Support Vector Regression (SVR) dalam Memprediksi Indeks Standar Pencemar Udara (ISPU) di Kota Makassar
Abstract
Air quality is a comprehensive indicator that reflects air pollution. The air quality index is defined as a description or value of the transformation of individual parameters of interrelated air pollution, such as PM10, SO2, CO, O3, NO2 into one value or a set of values so that it is easy to understand for the general public. Therefore, predictions of the Air Pollutant Standard Index in the future are needed for future policy decision making. SVR is a development of Support Vector Machine (SVM) for regression cases. The aim of this study is to predict the Air Pollutant Standard Index (ISPU) in the future using the SVR method. In the SVR method, the best kernel is used as an aid in solving non-linear problems, the Min-Max Normalization method for data normalization, division of training and testing data, selection of the best model with Grid Search Optimization. The best prediction results were obtained using a radial kernel with values with parameters ε = 0.1, C = 10, and γ = 1 with the smallest error of 0.0086, with an RMSE of 0.0894. The RMSE value indicates that the model's ability to follow data patterns well. From the model on the radial kernel, the predicted results of the Air Pollution Standard Index from January 1, 2025 to July 31, 2025 were obtained which were not constant or fluctuating with an interval range of 41,14 – 58,69 and based on the Air Pollution Standard Index category, it was in the fairly good category index.
References
Antony, E., Sreekanth, N. S., Sunil Kumar, R. K., & Nishanth, T. (2021). Data preprocessing techniques for handling time series data for environmental science studies. International Journal of Engineering Trends and Technology, 69(5), 196–207. https://doi.org/10.14445/22315381/IJETT-V69I5P227
Badan Pusat Statistik. (2024). Kota Makassar Dalam Angka 2024.
Dini Maulana, N., Darma Setiawan, B., & Dewi, C. (2019). Implementasi Metode Support Vector Regression (SVR) Dalam Peramalan Penjualan Roti (Studi Kasus: Harum Bakery) (Vol. 3, Issue 3). http://j-ptiik.ub.ac.id
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). A Pedagogical Explanation A Pedagogical Explanation Part of the Computer Sciences Commons. https://scholarworks.utep.edu/cs_techrep.
Han, J., Kamber, M., & Pei, J. (2011). Data Mining. Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems).
Khumaidi, A., Raafi, R., Permana Solihin, I., & Rs Fatmawati, J. (2020). Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung. Jurnal Telematika, 15(1).
Kurniawan, A. (2018). Pengukuran Parameter Kualitas Udara (CO, NO2, SO2, O3 Dan PM10) Di Bukit Kototabang Berbasis ISPU. Jurnal Teknosains, 7(1), 1. https://doi.org/10.22146/teknosains.34658
Laverda Subiyanto, M., Amanda, Y., Nadhil Fachrian, M., Yazid Busthomi Rohim, A., & Chamidah, N. (2023). Peramalan Kasus Harian Monkeypox Dunia Dengan Pendekatan Support Vector Regression.
Malem Ginting, L., MTSigiro, M., Delima Manurung, E., & Jasa Putra Sinurat, J. (2021). Perbandingan Metode Algoritma Support Vector Regression dan Multiple Linear Regression Untuk Memprediksi Stok Obat. In Journal of Applied Technology and Informatics (Vol. 1, Issue 2). http://journal-jati.del.ac.id/
Mawan P, F. N., & Papilaya, F. S. (2023). Analisa Prediksi Harga Emas Dengan Kemungkinan Terjadinya Resesi Menggunakan Metode SVR. Science and Information Technology. https://doi.org/10.31598
Mukhametzyanov, I. Z. (2023). On The Conformity of Scales of Multidimensional Normalization: An Application For The Problems of Decision Making. Decision Making: Applications in Management and Engineering, 6(1), 399–431. https://doi.org/10.31181/dmame05012023i
Priliani, E. M., Putra, A. T., & Muslim, M. A. (2018). Forecasting Inflation Rate Using Support Vector Regression (SVR) Based Weight Attribute Particle Swarm Optimization (WAPSO). Scientific Journal of Informatics, 5(2), 118–127. https://doi.org/10.15294/sji.v5i2.14613
Putu, N., Hendayanti, N., Ketut, I., Suniantara, P., Nurhidayati, M., Teknologi, I., Bisnis, D., Bali, S., Islam, I. A., & Ponorogo, N. (2019). Penerapan Support Vector Regression (SVR) dalam Memprediksi Jumlah Kunjungan Wisatawan Domestik ke Bali (Vol. 3, Issue 1).
Ruliana, Rais, Z., Marni, & Saleh Ahmar, A. (2024). Implementation of the Support Vector Regression (SVR) Method in Inflation Prediction in Makassar City. ARRUS Journal of Mathematics and Applied Science, 4(1). https://doi.org/10.35877/mathscience2608
Safira, A. N., Warsito, B., & Rusgiyono, A. (2023). Analisis Support Vector Regression (SVR) Dengan Algoritma Grid Search Time Series Cross Validation Untuk Prediksi Jumlah Kasus Terkonfirmasi Covid-19 di Indonesia. Jurnal Gaussian, 11(4), 512–521. https://doi.org/10.14710/j.gauss.11.4.512-521
Sajiwo, A. F. B., Rahmat, B., & Junaidi, A. (2024). Klasifikasi Indeks Standar Pencemaran Udara (ISPU) Menggunakan Algoritma XGBoost Dengan Teknik Imbalaced Data (SMOTE). Jurnal Informatika Dan Teknik Elektro Terapan, 12(3). https://doi.org/10.23960/jitet.v12i3.4699
Smola, A. J., Schölkopf, B., & Schölkopf, S. (2003). A Tutorial on Support Vector Regression *.
Yasin, H., Prahutama, A., Utami, T. W., Jurusan, D., & Undip, S. (2014). PrediksiI Harga Saham Menggunakan Support Vector Regression Dengan Algoritma Grid Search.
Yohannnes, Al Rivan Muhammad Ezar, Devella Siska, & Meiriyama. (2023). Klasifikasi Motif Songket Palembang Menggunakan Support Vector Machine Berdasarkan Histogram of Oriented Greadienst. 9, 143–149.








