Analisis Support Vector Regression untuk Meramalkan Saham Perusahaan Dss di Indonesia
Abstract
Forecasting is the process of estimating future events based on past information. In this study, the Support Vector Regression (SVR) method with the grid search time series cross-validation algorithm was used to analyze time series data. SVR is an extension of Support Vector Machine (SVM) for regression. This research aims to obtain the best model for predicting and forecasting the daily stock time series data of DSS company in Indonesia. The study compares four types of kernels—linear, polynomial, RBF, and sigmoid—to determine the best model. Model accuracy evaluation was conducted using RMSE, MSE, MAPE, and R-squared, where the model with the lowest error value was considered the best. The results show that SVR with a linear kernel, parameter C = 100, and epsilon = 0.01 produced an RMSE of 0.0583, MSE of 0.0034, MAPE of 10.53%, and R-squared of 0.99. Based on the MAPE value, this model is considered suitable for forecasting DSS stock, showing a downward trend in predictions
References
Anoraga, P. P. P., 2008, Pengantar Pasar Modal, PT. Rineka Cipta, Jakarta.
BEI., 2024, Saham, IDX. https://www.idx.co.id/id/produk/saham, diakses tgl 29 Juni 2024.
Darmaji, T. & Fakhruddin, H. M.., 2011, Pasar Modal di Indonesia, Jakarta : Salemba Empat.
Elsa., 2023, Penerapan Metode Support Vector Regression (Svr) Menggunakan Kernel Linear, Polinomial, Dan Radial Dengan Grid Search Optimization, Mi, 5–24, Skripsi, Program Sarjana Matematika, Univ. Lampung, Bandar Lampung.
Fahrusyian, G. E., 2019, Menggunakan Metode Support Vector Machine Forecasting the Number of Tuberculosis Disease Patients in East Java Region Using, In Institute teknology Sepuluh Nopember.
Herjanto, E., 2008, Manajemen Operasi Edisi Ketiga, Jakarta: Grasindo.
Kasmir, 2016, Analisis Laporan Keuangan, PT. RajaGrafindo Persada, Jakarta.
Sidqi, F. I., & Prabawani, B., 2017, Analisis Harga Saham dan Volume Perdagangan Saham Sebelum dan Sesudah Melakukan Stock Split, Jurnal Ilmu Administrasi Bisnis, 6(1), 44–54.
Toha, A., Purwono, P., & Gata, W., 2022, Model Prediksi Kualitas Udara dengan Support Vector Machines dengan Optimasi Hyperparameter GridSearch CV, Buletin Ilmiah Sarjana Teknik Elektro, 4(1), 12–21. https://doi.org/10.12928/biste.v4i1.6079.
Yasin, H., Prahutama, A., & Utami, T. W., 2014, Prediksi Harga Saham Menggunakan Support Vector Regression Dengan Algoritma Grid Search, Media Statistika, 7(1), 29–35. https://doi.org/10.14710/medstat.7.1.29-35.
Yudhawan, D. H., 2020, Implementasi Support Vector Regression Untuk Peramalan Harga Saham Perusahaan Pertambangan di Indonesia, xv–68, Skripsi, Program Sarjana Statistika, Univ. Islam Indonesia, Yogyakarta.