Analisis Perbandingan Model Double Exponential Smoothing dan ARIMA untuk Prediksi Harga Beras di Indonesia

  • Nurul Azizah Muzakir Universitas Sulawesi Barat
  • Muh Zarkawi Yahya Universitas Tadulako
Keywords: Forecasting, Rice price, Holt’s double exponential smoothing, ARIMA, MAPE

Abstract

Rice prices in Indonesia tend to increase from year to year and are influenced by various factors, such as domestic production and seasonal factors. Therefore, rice price forecasting is an essential thing to do. This study aims to analyze and compare the performance of two forecasting models, namely Holt’s Double Exponential Smoothing (DES) and Autoregressive Integrated Moving Average (ARIMA), in predicting rice prices in Indonesia. The data used is secondary data of average wholesale rice prices from January 2021 to December 2024. The results show that the optimal parameters of the Holt’s DES model are alpha = 0,9 and beta = 0,1, while the best ARIMA model is ARIMA(2,2,1) . Both models have a high level of accuracy with a Mean Absolute Percentage Error (MAPE) value of less than 1%. However, the ARIMA(2,2,1) model has a lower MAPE value than Holt’s DES model. Hence, it is more accurate in modeling rice prices in Indonesia. The forecasting results show that Holt’s DES model tends to produce higher rice predictions than . This occurs because Holt’s DES model is more sensitive to increasing trends, while ARIMA tends to be more conservative in capturing patterns of price changes. Thus, the selection of a model for rice price forecasting should consider the characteristics of the trend that occurs in the market, whether it is experiencing a continuous increase or has a fluctuating pattern.

References

Agustine, V., Indra, Z., & Nasution, H. (2022). Implementation of Double Exponential Smoothing Holt Method in Forecasting Commercial Rice Sales in Perum Bulog Sub Divre Medan. Zero : Jurnal Sains, Matematika, Dan Terapan, 6(2), 53–59.

Aminudin, R., & Putra, Y. H. (2019). Poverty Line Forecasting Model Using Double Exponential Smoothing Holt’s Method. IOP Conference Series: Materials Science and Engineering, 662(6), 062007. https://doi.org/10.1088/1757-899X/662/6/062007

Armaini, D., & Gunawan, E. (2016). Pengaruh produksi beras, harga beras dalam negeri dan produk domestik bruto terhadap impor beras Indonesia. Jurnal Ilmiah Mahasiswa Ekonomi Pembangunan Fakultas Ekonomi dan Bisnis Unsyiah, 1(2), 455–466.

Aryati, A., Purnamasari, I., & Nasution, Y. N. (2021). Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing (Studi Kasus: Jumlah Wisatawan Mancanegara yang Berkunjung Ke Indonesia). EKSPONENSIAL, 11(1), 99–106.

Badan Pusat Statistik. (2025). Rata-rata Harga Beras di Tingkat Perdagangan Besar (Grosir) Indonesia. https://www.bps.go.id/id/statistics-table/2/Mjk1IzI=/undefined

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. (Fourth Edition). John Wiley & Sons.

Cryer, J. D., & Chan, K.-S. (2008). Time Series Analysis with Applications in R (Second Edition). Springer.

Gapari, M. Z. (2021). Pengaruh Kenaikan Harga Beras terhadap Kesejahteraan Petani di Desa Sukaraja. PENSA, 3(1), 14–26. https://doi.org/10.36088/pensa.v3i1.1115

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

Lewis, C. D. (1982). Industrial and Business Forecasting Methods. Butterworths Scientific.

Manehat, A. (2024). Analisa Perbandingan Menggunakan Metode Double Exponential Smoothing dan Metode Double Moving Average untuk Peramalan Jumlah Penduduk Miskin Kabupaten Belu. Seminar Nasional Sistem Informasi.

Mgaya, J. F. (2019). Application of ARIMA models in forecasting livestock products consumption in Tanzania. Cogent Food & Agriculture, 5(1).
Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Intorduction to Time Series Analysis and Forecasting. John Wiley & Sons. Inc.

Sukarna, & Aswi. (2006). Analisis Deret Waktu: Teori dan Aplikasi. Makassar: Andira Publisher.

Supriatna, A., Susanti, D., & Hertini, E. (2017). Application of Holt exponential smoothing and ARIMA method for data population in West Java. IOP Conference Series: Materials Science and Engineering, 166, 012034. https://doi.org/10.1088/1757-899X/166/1/012034

Tarigan, E. D., Balqis, M. F., Hutapea, T. A., & Sihombing, D. I. (2024). Peramalan Harga Beras di Indonesia Dengan ARIMA. Sepren: Journal of Mathematics Education and Applied, 5(02), 117–126. https://doi.org/10.36655/sepren.v5i02.1508

Thitima Booranawong & Apidet Booranawong. (2018). Double exponential smoothing and Holt-Winters methods with optimal initial values and weighting factors for forecasting lime, Thai chili and lemongrass prices in Thailand. Engineering and Applied Science Research, 45(1), 32–38. https://doi.org/10.14456/EASR.2018.5

Wei, W. W. S. (2006). Time Series Analysis: Univariate and Mutlivariate Methods (Second Edition). Pearson Addison Wesley.

Zahrunnisa, A., Nafalana, R. D., Rosyada, I. A., & Widodo, E. (2021). PERBANDINGAN METODE EXPONENTIAL SMOOTHING DAN ARIMA PADA PERAMALAN GARIS KEMISKINAN PROVINSI JAWA TENGAH. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 2(3), 300–314. https://doi.org/10.46306/lb.v2i3.91
Published
2025-04-30
How to Cite
Nurul Azizah Muzakir, & Muh Zarkawi Yahya. (2025). Analisis Perbandingan Model Double Exponential Smoothing dan ARIMA untuk Prediksi Harga Beras di Indonesia. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 7(01), 7-20. https://doi.org/10.35580/variansiunm349
Section
Articles