Analisis Sentimen Ulasan Game Simulator Indonesia di Google Play Store Menggunakan Algoritma Naive Bayes

  • sitti Masyitah Meliyana R Department of Statistics, Universitas Negeri Makassar
  • Sudarmin Department of Statistics, Universitas Negeri Makassar
  • Yuni Sabrina Effendy Universitas Negeri Makassar
Keywords: Keywords: Simulator Game, Sentiment analysis, Naive Bayes Classifier.

Abstract

Sentiment analysis is the process of text data to understand the opinion contained in a sentence. The commonly used algorithm in this analysis is the Naïve Bayes Classifier. Naive Bayes Classifier (NBC) is a classification that uses statistical and probabilistic methods to group texts into several categories of sentiments such as positive and negative.  The Indonesian simulator game analyzed is Angkot d Game. This algorithm is used to understand users' perceptions of the game and to identify the factors that affect user sentiment. The results show that the Naive Bayes Classifier has a high level of accuracy in classifying the sentiments of simulator game reviews. The findings of this analysis are also expected to provide insights to game developers about user preferences and complaints, allowing them to adjust features or aspects of the game to better meet user needs. This enables game developers to make significant changes to the games they develop, potentially increasing revenue in the Indonesian gaming industry and focusing more on games created by local developers.

 

Keywords: Simulator Game, Sentiment analysis, Naive Bayes Classifier.

References

Alfandi Safira, & Hasan, F. N. (2023). Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier. ZONAsi: Jurnal Sistem Informasi, 5(1), 59–70. https://doi.org/10.31849/zn.v5i1.12856

Alfina, J. (2024). Ojol The Game: Sensasi Menjadi Driver Ojek Online di Dunia Virtual, Yuk Cobain! Retrieved from https://bisnismuda.id/read/7814-jennifer-alfina/ojol-the-game-sensasi-menjadi-driver-ojek-online-di-dunia-virtual-yuk-cobain

Arisandi, R. R. R., Warsito, B., & Hakim, A. R. (2022). Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation. Jurnal Gaussian, 11(1), 130–139. https://doi.org/10.14710/j.gauss.v11i1.33991

Aurelia Salsabila, N., Sa, U., & Fauzi, F. (2024). Analisis Sentimen Pada Ulasan Aplikasi TokopediaMenggunakan Klasifikasi Naïve Bayes. Prisma 2024, 7, 44–51.

Elistiana, K. M., Bagus Adhi Kusuma, Subarkah, P., & Awal Rozaq, H. A. (2023). Improvement of Naive Bayes Algorithm in Sentiment Analysis of Shopee Application Reviews on Google Play Store. Jurnal Teknik Informatika (Jutif), 4(6), 1431–1436. https://doi.org/10.52436/1.jutif.2023.4.6.1486

Ernamia, E. M. A., & Herliana, A. (2022). Analisis Sentimen Kuliah Daring Dengan Algoritma Naïve Bayes, K-Nn Dan Decision Tree. Jurnal Responsif : Riset Sains Dan Informatika, 4(1), 70–80. https://doi.org/10.51977/jti.v4i1.614

Fauzan, A. C., & Hikmah, K. (2022). Implementasi Algoritma Naive Bayes Dalam Analisis Polarisasi Opini Masyarakat Terkait Vaksin Covid-19. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 7(2), 122–128. https://doi.org/10.36341/rabit.v7i2.2403

Gilbert, Syariful Alam, & M. Imam Sulistyo. (2023). Analisis Sentimen Berdasarkan Ulasan Pengguna Aplikasi Mypertamina Pada Google Playstore Menggunakan Metode Naïve Bayes. STORAGE: Jurnal Ilmiah Teknik Dan Ilmu Komputer, 2(3), 100–108. https://doi.org/10.55123/storage.v2i3.2333

Ginabila, G., & Fauzi, A. (2023). Analisis Sentimen Terhadap Pemutar Musik Online Spotify Dengan Algoritma Naive Bayes dan Support Vector Machine. Jurnal Ilmiah ILKOMINFO - Ilmu Komputer & Informatika, 6(2), 111–122. https://doi.org/10.47324/ilkominfo.v6i2.180

Hasna, S. K. (2021). Analisis Sentimen Data Ulasan Menggunakan Algoritma Support Vector Machine (Studi Kasus: Aplikasi Iflix), 10(2), 6.

Insan, M. K., Hayati, U., & Nurdiawan, O. (2023). Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di, 7(1), 478–483.

Jihan Qothrunnada, N. (2023). Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3s1). https://doi.org/10.23960/jitet.v11i3s1.3348

Kurniati, I. D., Setiawan, R., Rohmani, A., Lahdji, A., Tajally, A., Ratnaningrum, K., … Wahab, Z. (2015). Buku Ajar.

Nurzahputra, A., & Muslim, M. A. (2022). Analisis Sentimen pada Opini Mahasiswa Menggunakan Natural Language Processing. Seminar Nasional Ilmu Komputer, (Snik), 114–118.

Pratiwi, T. A., Irsyad, M., & Kurniawan, R. (2021). Klasifikasi Kebakaran Hutan dan Lahan Menggunakan Algoritma Naïve Bayes (Studi Kasus: Provinsi Riau). Jurnal Sistem Dan Teknologi Informasi (Justin), 9(2), 101. https://doi.org/10.26418/justin.v9i2.42823

Purnama, F. (2023). Pendapatan industri game Indonesia capai Rp25 triliun. Retrieved March 13, 2024, from https://www.antaranews.com/berita/3774033/pendapatan-industri-game-indonesia-capai-rp25-triliun

Ramadhani, S. H., & Wahyudin, M. I. (2022). Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(4), 526–534. https://doi.org/10.35870/jtik.v6i4.530

Yutika, C. H., Adiwijaya, A., & Faraby, S. Al. (2021). Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes. Jurnal Media Informatika Budidarma, 5(2), 422. https://doi.org/10.30865/mib.v5i2.2845

Published
2025-09-30
How to Cite
Meliyana R, sitti M., Sudarmin, & Sabrina Effendy, Y. (2025). Analisis Sentimen Ulasan Game Simulator Indonesia di Google Play Store Menggunakan Algoritma Naive Bayes. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 7(2), 169-178. https://doi.org/10.35580/variansiunm336
Section
Articles